Blog

Melink Solar Receives Solar Power Worlds Greenest Contractor Award

Melink is Solar Power World’s 2021 Greenest Contractor.

Melink Solar is featured on the 2021 Top Solar Contractors List and receives Solar Power World’s “Greenest Contractor” Award.  Solar Power World magazine’s annual list includes Ohio-based, commercial solar design and build firm.

Cincinnati, Ohio — Every year, Solar Power World nominates one solar firm for the “Greenest Contractor” Award.  One company that stands out amongst all others in the U.S. for walking the talk. 

Melink has been at the forefront of the clean energy revolution for years.  In 2010, the company committed itself to achieving LEED Platinum EB (existing building) certification and eventually net-zero energy at its headquarters.  Melink installed a solar array on its rooftop to offset the electrical load.  Then, when giving tours of the super-green building, visitors became fascinated by the idea that Melink could generate their own power onsite.  This inspired Melink to build its own solar division.

Melink Solar moved into a brand new net-zero energy HQ2 building in 2020, next to HQ1.  It’s a state-of-the-art building with a super-insulated envelope, smart LED lighting, shade control, an innovative geothermal HVAC system, and a solar canopy with charging stations supporting its growing fleet of electric cars.

As one of Ohio’s most experienced EPC (Engineering, Procurement, Construction) firms, Melink Solar gains national ranking as a top solar contractor in 2021 from Solar Power World Magazine.  In 2020, Melink installed over 15 megawatts, and total installed capacity since 2010 is 74 MW.

Solar Power World has recognized the efforts of solar contractors across the United States in its 2021 Top Solar Contractors List, where local solar installer Melink Solar ranked first as an EPC headquartered in Ohio. Solar Power World interviewed Steve Melink, founder of Melink, and shares a Q&A that addresses how Melink is improving the industry and providing inspiration for more and more net-zero carbon facilities.

Melink Solar is a commercial solar EPC (engineering, procurement and construction) firm offering turnkey solutions with projects across the U.S. The firm specializes in designing and building roof mounts, ground mounts, and solar parking canopies.

To learn more about Melink Solar, please visit www.melinkcorp.com/solar.

Monica Niehaus

ABOUT MONICA NIEHAUS

Monica Niehaus joined Melink in 2020 and currently serves as a Business Development Manager. Monica is responsible for developing partnerships with accounts to grow solar and geothermal energy solutions in the commercial building sector.

What is Net Metering?

If you are considering solar for your commercial building, an important concept to understand is net metering, whether it applies in your state, and how it works with your utility company.

What is Net Metering?

Net metering is a billing incentive that offers credits to the owner when a solar PV system produces more electricity than consumed. Any excess power generated through solar feeds back into the utility grid, thus qualifying the owner for a “credit” on his or her electric bill. Think of “debits” as energy used from the grid, or any electricity that solar power cannot cover during a given period.

What is net metering? Day to night graphic of energy flow from solar panel to grid
This animation illustrates the flow of energy production when electricity is used over the day and night. During the day, the owner generates credits when the building’s solar panels produce more power than needed (net metering). The meter spins backwards, and excess electricity gets sent to the grid. At night, the building’s electricity needs aren’t fulfilled by solar due to lack of sunlight. Its power is therefore sourced, or debited, from the grid.

 

How Does Net Metering Work?

  • Credits = Power produced by solar
  • Debits = Electricity consumed from the grid

The net of these two is how net metering functions, factoring in whether the owner is charged for grid usage, or owed credits for solar production.

Think of the daily variations of energy usage in the typical home. Assume that residents typically consume most of their electricity in the mornings and evenings, before and after work. If there is little or no solar production during the time when electricity is needed, energy will come from the grid. Hence, debits — or the costs one would otherwise see on the utility bill.

Solar energy systems usually hit peak production in the afternoon when sun exposure is maximized. So, what happens to all the solar generation during the day if the power is not used or needed? The excess solar power spins the meter backwards and sends energy to the grid. Hence, these credits serve to help offset your electricity bill.

 

Why is Net Metering Important?

Net metering ensures the owner is credited for those natural swings in daily production. Depending on your building’s energy usage and time of peak demand, net metering can help maximize the owner’s savings from solar power. Understanding net metering laws can help determine the ideal size of the PV system, after factoring in daily, weekly, monthly, or annual estimated energy usage.

If you are considering switching to solar, these net metering regulations should guide the solar company to design your system in the most cost-effective way. After evaluating your electricity usage, the solar provider should factor in net metering compensation to get the best return on your investment, depending on how much PV generation you prefer.

 

How Does Net Metering Compensation Work?

Forms of compensation will vary by state and utility company. Generally, the owner should be charged only for the net electricity used by the end of the month. In some instances, if more power is generated by solar than consumed over a month or year, the utility will roll over those credits to the next period. In other scenarios, the consumer will be compensated at the retail or wholesale rate at the end of a given cycle.

Consumers must elect to receive credits in a contract with their utility provider. Tariff sheets, or compensation rates, are provided by the utility and explain whether solar overproduction results in the following:

  • Monetary bill credits
  • Check payments
  • kWh credits to offset future consumption from the grid

It is important to fully understand your state’s policies regarding net metering compensation. EnergySage explains how net metering rules can vary: “If you do generate more electricity than you use in a year, utilities in some states will let you carry credits over into future years, while others will reduce your credits.”

Do not let credits confuse you for cash payments, unless you live in a state that allows for that type of compensation. While you can stock up on credits to cover power you may need from the grid throughout the month or year, do not assume the utility companies will be sending a check covering the full retail rate.

 

Does Every State Have Net Metering?

While net metering is authorized in most states, there are different approaches to how they distribute credits, assign eligible technology, and handle capacity limits. The National Conference of State Legislatures expands on state-specific laws and advises one cannot make assumptions about compensation without digging into state rules. For example, “California credits excess generation to a customer’s next bill at retail rate. After a 12-month period, customers can choose whether to roll credits over indefinitely or receive a payment for credits at the wholesale rate. If no option is selected, credits are granted to the utility with no customer compensation.” In this case, the owner can opt in for credits at the end of the year, but it will be at the wholesale rate. Month to month, however, they receive credits at the retail rate.

Net metering policies were originally intended for areas with lower solar adoption. As more and more states become reliant on clean energy, we can expect some changes to occur. Regardless of your state or utility’s current policy, it’s important to understand how different factors can affect your long-term savings when installing solar panel systems.

 

Does Net Metering Eliminate Utility Bills?

A common misconception is that if you can attain Net Zero Energy for your building, you will not receive a utility bill. This is false, as the owner is still tied to the utility company in some capacity. If you are producing a lot of solar power, the building consumes the amount of electricity needed, and the remaining power shoots back onto the grid. Credits are accumulated through net metering and impact whether your utility bill is $0, or a lesser amount than in the past.

Sure, you may owe less to the utility, and the bill may look different depending on how much energy solar can offset. However, in most cases, solar will supply as much electricity as possible, and the remaining power is met by the grid.

 

How Does Net Demand Work?

The following chart shows a live example of how net metering works when savings occur with solar PV generation. These daily variations in current demand (debits), layered against solar PV power (credits), result in the building’s net demand.

The solar energy system at this site overproduces during the first two days since there is ample sunlight and little demand. The utility is crediting the owner’s account for that overproduction, which is then used to offset the bill when the system is under-producing.

Net metering occurs in the areas that display overproduction from solar. Excess electricity causes the meter to spin backwards. In these cases, solar generates more power than the actual usage. That excess power is sent back to the grid, while “credits” accumulate on the account.

Savings occur in every green area where solar produces power. For example, although the system is not overproducing during the last day, solar is still helping to offset part of the demand costs, or “debits.”

 

Net Metering in Office Building

WEEKEND: On Saturday and Sunday, the building load is very low. Solar power is generated throughout the day with plenty of sun, which causes a lot of energy to be exported to the grid (accumulating credits). Credits are being used up at night while there is still some electricity load.
MONDAY: The building energy load spikes, causing debits on the account. Solar generation doesn’t show a consistent curve since it’s cloudy outside. For the most part, the building is pulling power from the grid (at a reduced rate), and energy is exported for a small amount of time in the middle of the day.
TUESDAY: A nice, sunny day. In the morning, the building starts pulling power from the grid as the energy load shoots up when workers arrive. Then, the load from the grid starts to slowly reduce as some of the electricity is produced by the solar array. Then, eventually, the building exports power back to the grid (accumulating credits), before the cycle reverses again.
WEDNESDAY: No net-metering occurs because of the lack of sun. However, the load from the grid is reduced and savings still occur. The net of the debits and credits appears in the middle.

 

Net metering can be a confusing subject. The experts at Melink Solar & Geo can help you navigate the jargon and determine the best solution for your business. Leave a comment below.

The Added Appeal of Solar Canopies

As businesses attempt to set themselves apart in a world of emerging technologies, those invested in renewable energy continue to outshine competition. Solar power in particular has not only proven to be a profitable investment — it can also serve as a marketing tool to entice customers and employees. Consider a solar canopy covering your business’ parking lot. Continue reading “The Added Appeal of Solar Canopies”

Solar Industry News Updates: September 2020

Quickly catch up on the latest solar news in the solar industry…

Solar Module Price Fluctuations

Solar suppliers may be noticing recent pricing swings. Several events have led to price fluctuations in the solar supply market:

  1. In mid-July, a series of flash explosions at a GCL Silicon polysilicon plant reportedly took down more than 10% of the global supply of polysilicon. Polysilicon is the base material for making mono- and poly-crystalline modules. This shortage was almost immediately followed by a 60% increase in the price of polysilicon.
  2. In another blow to the polysilicon supply, severe flooding in southeastern China forced the closure of Tongwei’s polysilicon factory in Sichuan.
  3. Sourcing raw materials, specifically glass, has become a much longer process since the COVID-19 outbreak began. Glass shortages are resulting in higher prices and longer procurement windows for manufacturers.

These events are leading fluctuating pricing within the supply chain. Wood Mackenzie Power & Renewables estimates that bifacial module pricing will stabilize by 2021.

26% Federal Tax Solar Credit – Act Now!

If you are considering adding a solar energy system to your commercial facility, do not let the market’s price fluctuations dissuade you from moving forward. There is a generous 26% U.S. federal Investment Tax Credit available for 2020 projects. In 2021, this credit steps down to 22%, eventually dropping to just 10% in 2022.

To be eligible for the 26% credit, construction must commence (i.e. physical work start) by Dec. 31, 2020, and the project must be completed by Dec. 31, 2023. There are options available to purchase now but not fully build the project until a later time. As a solar EPC firm, Melink Solar can help you navigate this process and determine what is in your company’s best interest — contact us today

Solar Plant Growth

According to a survey of U.S. solar industry professionals, large solar plants have a longer operational life expectancy and are cheaper to run, citing the following:

  • Reductions in up-front expenses
  • Changes in capacity factors, financing costs, and tax rates
  • Improvements in project life
  • Operating expenditures

The assumed life of projects now averages 32.5 years, up from 21.5 years in 2007. This expanded lifeline comes with many benefits for solar plant owners. Read more on this topic.

Solar in the 2020 Election

In other solar news, the climate crisis is expected to be an important issue in the 2020 U.S. presidential election. Most supportive renewable policy in the U.S. is coming at the state level, and many are advocating the need for support at the federal level. President Donald Trump has generally held an unfavorable view of supporting renewables. Presidential candidate Joe Biden supports a national plan to convert the U.S. to 100% clean energy by 2035. Read more about the candidates’ solar policy.

Melink Solar & Geo Awarded U.S. Department of Energy Grant

FOR IMMEDIATE RELEASE

Why it Matters

Cincinnati, Ohio — Melink Solar & Geo, Inc., a solar PV and geothermal engineering company, has been awarded grant funding by the United States Department of Energy’s (DOE). The Office of Energy Efficiency and Renewable Energy (EERE) specifically provided the grant funding. The funding enables Melink to accelerate the research and development of its next-generation Hybrid Geothermal HVAC System. This system stores energy using thermal batteries. It can potentially reduce installation costs of geothermal heat pump systems. In effect, providing significant energy saving opportunities for the U.S. with widespread implementation. The system’s prototype currently heats and cools Melink’s new Net-Zero Energy HQ2 facility in Milford, Ohio.

Melink Hybrid Geothermal HVAC System
Melink Solar & Geo has been awarded an innovation grant from the U.S. Department of Energy for its Hybrid Geothermal HVAC System. A system prototype is in operation at its Milford, Ohio, headquarters.

“Our company is developing a Hybrid Geothermal HVAC System to minimize the need for expensive ground loops. Instead, we are mimicking the thermal energy storage capacity of the water inside such ground loops with phase change materials (PCM),” said Steve Melink, founder and CEO. “Melink is piloting the first prototype at our Net-Zero Energy headquarters, and we are now developing next-generation prototypes for eventual commercialization. With our third U.S. Department of Energy grant, we are committed to mainstreaming this technology for the benefit of the entire HVAC industry.”

Hard Work Pays Off

The funding is part of an ongoing innovation project with the DOE. The project encourages small businesses to advance innovation at federal agencies. Melink received the recent funding as a result of its Hybrid Geothermal HVAC System. This system demonstrated technical feasibility during the first phase of research. Melink Solar & Geo’s skill team worked collaboratively with the University of Dayton, Oak Ridge National Laboratory, and industry partners. Together, we designed a more cost-effective and energy efficient HVAC system.

“Funding from the DOE is the result of a multi-year effort. A group of intelligent and highly dedicated people have proven that the system has merit. I’m excited to say that the Hybrid Geothermal HVAC System is just one part of our growing platform of Net-Zero products,” said Seth Parker, vice president and general manager of Melink Solar & Geo.

The two-year funding will be used to finalize engineering and early commercialization of the Hybrid Geothermal HVAC System. For more information about the system or Melink Solar & Geo, please visit https://www.melinksolar.com/geothermal or contact geo@www.melinksolar.com.

About Melink Solar & Geo

Melink Solar & Geo is a national provider of renewable energy and efficiency solutions for commercial buildings. We provide consulting services and turnkey management of solar and geothermal projects. These services help businesses of all sizes reduce energy consumption and produce clean and sustainable energy for their facilities. The company recently opened a Zero-Energy building on its campus, featuring new thermal storage technologies being tested. This will help further mainstream geothermal HVAC for commercial use. Melink Solar & Geo is affiliated with Melink Corporation, which provides energy efficiency solutions for commercial buildings.

Melink Solar Featured on 2020 Top Solar Contractors List

Solar Power World magazine’s Top Solar Contractors annual list includes Cincinnati-based solar installer.

FOR IMMEDIATE RELEASE

Cincinnati, Ohio — Although the COVID-19 pandemic is the immediate crisis, mitigating climate change is also an urgent issue. Solar installations are one way to help reduce greenhouse gases from fossil fuel-based power generation. Solar Power World has recognized the efforts of solar contractors across the United States in its 2020 Top Solar Contractors list, where local solar installer Melink Solar achieved a rank of 69 out of 407 companies.

Top Solar Contractors

The Top Solar Contractors list is developed each year by Solar Power World to honor the work of solar installers big and small. Solar firms in the utility, commercial and residential markets are ranked by number of kilowatts installed in the previous year. Companies are grouped and listed by specific service (developers, electrical subcontractors, EPCs, installation subcontractors, rooftop installers), markets and states.

“The Solar Power World team is so pleased to highlight more than 400 companies on the 2020 Top Solar Contractors list, especially during this unprecedented time,” said Kelsey Misbrener, senior editor of Solar Power World. “All contractors featured on the 2020 list reported strong 2019 installation numbers and are continuing to stand tall this year.”

This year’s collection of more than 400 Top Solar Contractors is facing obstacles that the industry has never seen before. The first quarter of 2020 was the country’s biggest ever capacity gain, with 3.6 GW of new solar capacity added. However, COVID-19 impacts slowed the market in Q2.

Melink Solar installed 27,266.8 kW (27.2 MW) of solar power in 2019. Since its founding, the company has installed more than 65 MW of solar, equivalent to 215,000 solar panels. Melink Solar is a commercial solar EPC (engineering, procurement and construction) firm offering turnkey solutions with projects across the U.S. The firm designs solar systems, procures all labor and supplies, constructs the solar array, monitors performance and provides remote and field troubleshooting assistance.

To learn more about Melink Solar, please visit www.melinksolar.com/solar.

About Melink

Melink Corporation is a global provider of energy efficiency and renewable energy solutions for commercial buildings with five offerings: Intelli-Hood® Kitchen Ventilation Controls, HVAC Test & Balance, Solar PV, Geothermal HVAC, and PositiV® Building Health Monitor. For more than 30 years, Melink has helped companies save energy, increase profitability, and make the world more sustainable. In 2018, Melink became an ESOP and is now 100% employee-owned.

About Solar Power World

Solar Power World is the leading online and print resource for news and information regarding solar installation, development and technology. Since 2011, SPW has helped U.S. solar contractors — including installers, developers and EPCs in all markets — grow their businesses and do their jobs better.

Q&A: What Is Net Metering?

If you are considering solar for your commercial building, an important concept to understand is net metering, whether it applies in your state, and how it works with your utility company.

What is Net Metering?

Net metering is a billing incentive that offers credits to the owner when a solar PV system produces more electricity than consumed. Any excess power generated through solar feeds back into the utility grid, thus qualifying the owner for a “credit” on his or her electric bill. Think of “debits” as energy used from the grid, or any electricity that solar power cannot cover during a given period.

What is net metering? Day to night graphic of energy flow from solar panel to grid
This animation illustrates the flow of energy production when electricity is used over the day and night. During the day, the owner generates credits when the building’s solar panels produce more power than needed (net metering). The meter spins backwards, and excess electricity gets sent to the grid. At night, the building’s electricity needs aren’t fulfilled by solar due to lack of sunlight. Its power is therefore sourced, or debited, from the grid.

How Does Net Metering Work?

  • Credits = Power produced by solar
  • Debits = Electricity consumed from the grid

The net of these two is how net metering functions, factoring in whether the owner is charged for grid usage, or owed credits for solar production.

Think of the daily variations of energy usage in the typical home. Assume that residents typically consume most of their electricity in the mornings and evenings, before and after work. If there is little or no solar production during the time when electricity is needed, energy will come from the grid. Hence, debits — or the costs one would otherwise see on the utility bill.

Solar energy systems usually hit peak production in the afternoon when sun exposure is maximized. So, what happens to all the solar generation during the day if the power is not used or needed? The excess solar power spins the meter backwards and sends energy to the grid. Hence, these credits serve to help offset your electricity bill.

Why is Net Metering Important?

Net metering ensures the owner is credited for those natural swings in daily production. Depending on your building’s energy usage and time of peak demand, net metering can help maximize the owner’s savings from solar power. Understanding net metering laws can help determine the ideal size of the PV system, after factoring in daily, weekly, monthly, or annual estimated energy usage.

If you are considering switching to solar, these net metering regulations should guide the solar company to design your system in the most cost-effective way. After evaluating your electricity usage, the solar provider should factor in net metering compensation to get the best return on your investment, depending on how much PV generation you prefer.

How Does Net Metering Compensation Work?

Forms of compensation will vary by state and utility company. Generally, the owner should be charged only for the net electricity used by the end of the month. In some instances, if more power is generated by solar than consumed over a month or year, the utility will roll over those credits to the next period. In other scenarios, the consumer will be compensated at the retail or wholesale rate at the end of a given cycle.

Consumers must elect to receive credits in a contract with their utility provider. Tariff sheets, or compensation rates, are provided by the utility and explain whether solar overproduction results in the following:

  • Monetary bill credits
  • Check payments
  • kWh credits to offset future consumption from the grid

It is important to fully understand your state’s policies regarding net metering compensation. EnergySage explains how net metering rules can vary: “If you do generate more electricity than you use in a year, utilities in some states will let you carry credits over into future years, while others will reduce your credits.”

Do not let credits confuse you for cash payments, unless you live in a state that allows for that type of compensation. While you can stock up on credits to cover power you may need from the grid throughout the month or year, do not assume the utility companies will be sending a check covering the full retail rate.

Does Every State Have Net Metering?

While net metering is authorized in most states, there are different approaches to how they distribute credits, assign eligible technology, and handle capacity limits. The National Conference of State Legislatures expands on state-specific laws and advises one cannot make assumptions about compensation without digging into state rules. For example, “California credits excess generation to a customer’s next bill at retail rate. After a 12-month period, customers can choose whether to roll credits over indefinitely or receive a payment for credits at the wholesale rate. If no option is selected, credits are granted to the utility with no customer compensation.” In this case, the owner can opt in for credits at the end of the year, but it will be at the wholesale rate. Month to month, however, they receive credits at the retail rate.

Net metering policies were originally intended for areas with lower solar adoption. As more and more states become reliant on clean energy, we can expect some changes to occur. Regardless of your state or utility’s current policy, it’s important to understand how different factors can affect your long-term savings when installing solar panel systems.

Does Net Metering Eliminate Utility Bills?

A common misconception is that if you can attain Net Zero Energy for your building, you will not receive a utility bill. This is false, as the owner is still tied to the utility company in some capacity. If you are producing a lot of solar power, the building consumes the amount of electricity needed, and the remaining power shoots back onto the grid. Credits are accumulated through net metering and impact whether your utility bill is $0, or a lesser amount than in the past.

Sure, you may owe less to the utility, and the bill may look different depending on how much energy solar can offset. However, in most cases, solar will supply as much electricity as possible, and the remaining power is met by the grid.

How Does Net Demand Work?

The following chart shows a live example of how net metering works when savings occur with solar PV generation. These daily variations in current demand (debits), layered against solar PV power (credits), result in the building’s net demand. 

The solar energy system at this site overproduces during the first two days since there is ample sunlight and little demand. The utility is crediting the owner’s account for that overproduction, which is then used to offset the bill when the system is under-producing.

Net metering occurs in the areas that display overproduction from solar. Excess electricity causes the meter to spin backwards. In these cases, solar generates more power than the actual usage. That excess power is sent back to the grid, while “credits” accumulate on the account.

Savings occur in every green area where solar produces power. For example, although the system is not overproducing during the last day, solar is still helping to offset part of the demand costs, or “debits.”

Net Metering Graph

WEEKEND: On Saturday and Sunday, the building load is very low. Solar power is generated throughout the day with plenty of sun, which causes a lot of energy to be exported to the grid (accumulating credits). Credits are being used up at night while there is still some electricity load.
MONDAY: The building energy load spikes, causing debits on the account. Solar generation doesn’t show a consistent curve since it’s cloudy outside. For the most part, the building is pulling power from the grid (at a reduced rate), and energy is exported for a small amount of time in the middle of the day.
TUESDAY: A nice, sunny day. In the morning, the building starts pulling power from the grid as the energy load shoots up when workers arrive. Then, the load from the grid starts to slowly reduce as some of the electricity is produced by the solar array. Then, eventually, the building exports power back to the grid (accumulating credits), before the cycle reverses again.
WEDNESDAY: No net-metering occurs because of the lack of sun. However, the load from the grid is reduced and savings still occur. The net of the debits and credits appears in the middle.

To download the chart, click here.

How Do I Learn More About Net Metering?

Net metering can be a confusing subject. The experts at Melink Solar & Geo can help you navigate the jargon and determine the best solution for your business. Contact us today.